Personnel Management Automation: systematic scientific publications review
EDN SLJIHO
DOI:
https://doi.org/10.22394/2304-3369-2025-1-57-79Abstract
Introduction. Automation in the field of HR is one of the ways to increase both the efficiency of the human resource management service and the organization as a whole. Appropriate reviews of the scientific literature are needed to promote awareness and dissemination of the current technological and management practices application. Companies that use modern technologies gain an advantage that determines their higher level of competitiveness compared to organizations that do not pay enough attention to this area. Technological solutions are developing rapidly, and an overview of innovations and existing trends may be of interest to both researchers and practitioners in the field of personnel management. The purpose of this review is to analyze the scientific thought development in the field of personnel management automation over the past 5 years. This article discusses both the possibilities offered by experts in the field of automation through the implementation of specific technological solutions, and methodological approaches in the field of automation of personnel management.
Methodology and methods. The article is a systematic review of scientific publications on the topic of personnel management automation over the past 5 years (since 2019). The OpenAlex platform was used as a database for the analysis. The search date was 23.08.2024, the keywords used were “hr human resources automation”, only scientific articles were included in the analysis perimeter. As a part of the quantitative analysis of the sample, the following items were considered: general characteristics of the sample, productivity of the authors of the articles, an assessment of the use and interrelation of keywords of the sample articles. The bibliometrix package for the R programming language (based on the biblioshiny interface) was used to analyze and present the results. Next, the works were selected for qualitative analysis. Five main thematic areas of publications with the largest number of works were identified. Further, articles were selected out of these works for review based on thematic relevance, content and availability in the Scopus database. The availability of materials selected for analysis varies and is determined by the policy of the publishing journal / publication conditions of a particular article. The PRISMA (2020) recommendations were taken into account when conducting the review.
Results. The initial sample for quantitative analysis included 3727 articles, and 46 papers were selected for qualitative analysis. Basing on the analysis, one may conclude that the number of publications on the topic is growing, while the distribution of publication activity by individual authors does not show significant deviations. The most used keywords are directly related to personnel management and digital technologies. Popular areas of work: Industry 4.0 and digital transformation, analysts in the field of human resource management, approaches in the field of personnel management (usage of key performance indicators, recruiting, personnel development, etc.).
Conclusions. Much attention in the considered works is paid to the potential of using generative language models (like ChatGPT) and the impact of automation of the production process on the HR function work. Subject matter experts see significant potential in improving HR management processes through the use of modern technological solutions. At the same time, the importance of developing existing practices in the field of human resource management and maintaining a focus on the development of human capital of companies is emphasized. Lack of specialized competencies among employees, financial costs when implementing new solutions and the risks of violating ethical standards are difficulties that organizations may possibly face. The development of personnel management practices under the influence of technological changes requires further study. The main limitations of the review include the possible incompleteness of the database used to review the articles, as well as the risks of the author bias in terms of selecting and conducting a qualitative analysis of the articles.
Funding. The review was conducted by the author without any external funding.
KEYWORDS
Automation, personnel management, human capital, digitalization, artificial intelligence.
References
1. Mishra, S., Ewing, M. T. Cooper, H. B. (2022) Artificial intelligence focus and firm performance. Journal of the Academy of Marketing Science, 50 (6), pp. 1176–1197. DOI 10.1007/s11747-022-00876-5. EDN UYIKEW.
2. Grabowska, S., Saniuk, S., Gajdzik, B. (2022) Industry 5.0: improving humanization and sustainability of Industry 4.0. Scientometrics, 127 (6), pp. 3117–3144. DOI 10.1007/s11192-022-04370-1. EDN HBFQRM.
3. Proia, S., Carli, R., Cavone, G., Dotoli, M. (2021). Control techniques for safe, ergonomic, and efficient human-robot collaboration in the digital industry: A survey. IEEE Transactions on Automation Science and Engineering, 19 (3), pp. 1798–1819. DOI 10.1109/TASE.2021.3131011. EDN XWIVMW.
4. Mukhuty, S., Upadhyay, A., Rothwell, H. (2022) Strategic sustainable development of Industry 4.0 through the lens of social responsibility: The role of human resource practices. Business Strategy and the Environment, 31 (5), pp. 2068–2081. DOI 10.1002/bse.3008. EDN ZIUMZM.
5. Olsson, A.K., Eriksson, K.M., Carlsson, L. (2025) Management toward Industry 5.0: a co-workership approach on digital transformation for future innovative manufacturing. European Journal of Innovation Management, 28 (1), pp. 65–84. DOI 10.1108/EJIM-09-2023-0833.
6. Li, L. (2022) Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, pp. 1–16. DOI 10.1007/s10796-022-10308-y. EDN MRHORJ.
7. Waschull, S., Bokhorst, J.A.C., Wortmann, J.C., Molleman, E. (2022) The redesign of blue-and white-collar work triggered by digitalization: collar matters. Computers & Industrial Engineering, 165, 107910. DOI 10.1016/j.cie.2021.107910. EDN UPFUSY.
8. Galanti, T., De Vincenzi, C., Buonomo, I., Benevene, P. (2023) Digital transformation: Inevitable change or sizable opportunity? The strategic role of HR management in industry 4.0. Administrative Sciences, 13 (2), 30. DOI 10.3390/admsci13020030. EDN EAXUYT.
9. Cimini, Ch., Lagorio, A., Cavalieri, S. (2024) Development and application of a maturity model for Industrial Agile Working. Computers & Industrial Engineering, 188, 109877. DOI 10.1016/j.cie.2023.109877. EDN ZYFWDA.
10. Macpherson, W., Werner, A., Mey, M. R. (2022) Industry 4.0: Emerging job categories and associated competencies in the automotive industry in South Africa. SA Journal of Human Resource Management, 20, 10. DOI 10.33215/t02k1p32. EDN AFLMZF.
11. Ngobeni, D. A., Saurombe, M. D., Joseph, R. M. (2022) The influence of the psychological contract on employee engagement in a South African bank. Frontiers in psychology, 13, 958127. DOI 10.3389/fpsyg.2022.958127. EDN SWHGKS.
12. Prikshat, V., Malik, A., Budhwar, P. (2023) AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review, 33 (1), 100860. DOI 10.1016/j.hrmr.2021.100860. EDN FKOJBZ.
13. Jacob Fernandes França, T., São Mamede, H., Pereira Barroso, J.M., Pereira Duarte dos Santos, V.M. (2023) Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9, 4. DOI 10.1016/j.heliyon.2023.e14694. EDN KHZHGP.
14. Korzynski, P., Mazurek, G., Altmann, A., Ejdys, J., Kazlauskaite, R., Paliszkiewicz, J., Wach, K., Ziemba, E. (2023) Generative artificial intelligence as a new context for management theories: analysis of ChatGPT. Central European Management Journal 31 (1), pp. 3–13. DOI 10.1108/CEMJ-02-2023-0091. EDN GHAJOT.
15. Rožman, M., Oreški, D., Tominc, P. (2022) Integrating artificial intelligence into a talent management model to increase the work engagement and performance of enterprises. Frontiers in psychology, 13, 1014434. DOI 10.3389/fpsyg.2022.1014434. EDN YPFSRS.
16. Tanasescu, L.G., Vines, A., Bologa, A.R., Vîrgolici, O. (2024) Data Analytics for optimizing and predicting employee performance. Applied Sciences, 14 (8), 3254. DOI 10.3390/app14083254. EDN NQALDU.
17. Koenig, N., et al. (2023) Improving measurement and prediction in personnel selection through the application of machine learning. Personnel Psychology, 76 (4), pp. 1061–1123. DOI 10.1111/peps.12608. EDN RCUGYB.
18. Faqihi, A., Miah, Sh. Ja. (2023). Artificial intelligence-driven talent management system: Exploring the risks and options for constructing a theoretical foundation. Journal of Risk and Financial Management, 16 (1), 31. DOI 10.3390/jrfm16010031. EDN OEYBTW.
19. Singh, A., Pandey, Ja. (2024) Artificial intelligence adoption in extended HR ecosystems: enablers and barriers. An abductive case research. Frontiers in Psychology, 14, 1339782. DOI 10.3389/fpsyg. 2023.1339782. EDN ZMQIEB.
20. Jacob Fernandes França, T., São Mamede, H., Pereira Barroso, J.M., Pereira Duarte dos Santos, V.M. (2023) Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9 (4). DOI 10.1016/j.heliyon.2023.e14694. EDN KHZHGP.
21. Chowdhury, S., Dey, P., Rodriguez-Espindola, O., Truong, L., Joel-Edgar, S., Bhattacharya, S., Abadie, A. (2023) Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human resource management review. 33 (1), 100899. DOI 10.1016/j.hrmr.2022.100899. EDN ZUAMQA.
22. Grabowska, S., Saniuk, S. (2022) Assessment of the competitiveness and effectiveness of an open business model in the industry 4.0 environment. Journal of Open Innovation: Technology, Market, and Complexity, 8 (1), 57. DOI 10.3390/joitmc8010057. EDN DQDENM.
23. Cernisevs, O., Popova, Ye., Cernisevs, D. (2023) Business KPIs Based on Compliance Risk Estimation. Journal of Tourism and Services, 14 (27), pp. 222–248. DOI 10.29036/jots.v14i27.636. EDN WPBCNI.
24. Priyashantha, K. G., Chandradasa, A. H. I. (2023) Electronic human resource management (e-HRM) adoption; a systematic literature review. Sri Lanka Journal of Social Sciences, 46 (1). DOI 10.4038/sljss.v46i1.8573. EDN EFYNPI.
25. Prasad, K., Nag, D., Kalavakolanu, S., Vaidya, R. (2023) The application of human resources information systems for enhancing output in agricultural companies. Journal of Social Economics Research, 10 (4), pp. 179–193. DOI 10.18488/35.v10i4.3521. EDN AOZNKN.
26. Bhatia, A., Nangia, R. (2023). Impact of human resources information system on human resource strategies with empirical study of banking industry. Journal of Pharmaceutical Negative Results, pp. 1034–1037. DOI 10.47750/pnr.2023.14.S01.140. EDN FSCRKZ.
27. Boiko, Ju., Vedernikov, M., Zelena, M., Volianska-Savchuk, L., Bazaliyska, N. (2023) Formation of Innovative Model of Personnel Management on the Basis of Digitalization in the COVID-19 Pandemic. Management and Production Engineering Review, 14. DOI 10.24425/mper.2023.146022. EDN XZIEZQ.
28. Iakovets, A., Balog, M., Židek, K. (2022) The use of mobile applications for sustainable development of SMEs in the context of Industry 4.0. Applied Sciences, 13 (1), 429. DOI 10.3390/app13010429. EDN EXIPYK.
29. Straková, Ja., Talíř, M., Váchal, Ja. (2022) Opportunities and threats of digital transformation of business models in SMEs. Economics and Sociology, 15 (3), pp. 159–171. DOI 10.14254/2071-789X.2022/15-3/9. EDN TTTLBU.
30. Chorna, O., et al. (2023) Anti-Crisis regulation of enterprises through digital management. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev, 8 (5) 90. DOI 10.55908/sdgs.v11i3.816.
31. Mazurchenko, A., Zelenka, M., Maršíková, K. (2022) Demand for employees' digital skills in the context of banking 4.0. E&M Ekonomie a Management, 25 (2), pp. 41–58. DOI 10.15240/tul/001/2022-2-003. EDN HFQEOS.
32. Balková, M., Ližbetinová, L., Lejsková, P. (2022) The values supporting the creativity of employees. Frontiers in Psychology, 12, 805153. DOI 10.3389/fpsyg.2021.805153. EDN RQXLNB.
33. Alan, H. (2023) A systematic bibliometric analysis on the current digital human resources management studies and directions for future research. J Chin Hum Resour Manag, 14 (1), pp. 38–59. DOI 10.47297/wspchrmWSP2040-800502.20231401. EDN TLATOH.
34. Papaevangelou, O., Syndoukas, D., Kalogiannidis, S., Chatzitheodoridis, F. (2023) Efficacy of embedding IT in human resources (HR) practices in education management. Journal of Infrastructure, Policy and Development, 8 (1), 2371. DOI 10.24294/jipd.v8i1.2371. EDN ZBOZAO.
35. Buitek, E. К., Kaliyeva, S. A., Turginbayeva, A. N., Meldakhanova, M. K., Shaikh, A.A. (2023) How much does an employer's attractiveness matter to youth employment? Evidence from a developing country. Asia-Pacific Journal of Business Administration. DOI 10.1108/APJBA-02-2023-0086. EDN KZDEHC.
36. Memon, Kh. R., Ghani, B., Hyder, S. I., Han, H., Zada, M., Ariza-Montes, A., Arraño-Muñoz, M. (2022) Management of knowledge and competence through human resource information system-A structured review. Frontiers in Psychology, 13, 944276. DOI 10.3389/fpsyg.2022.944276. EDN MABXZY.
37. Amoako, R., Jiang, Yu., Adu-Yeboah, S. S., Frempong, M. F., Tetteh, S. (2023) Factors influencing electronic human resource management implementation in public organisations in an emerging economy: An empirical study. South African Journal of Business Management, 54 (1), 2937. DOI 10.4102/sajbm.v54i1.2937. EDN AYLYEH.
38. Ceric, A., Parton, K. (2024) What prevents organisations from achieving e-HRM potential? Australasian Journal of Information Systems, 28. DOI 10.3127/ajis.v28.3877. EDN KFMTJR.
39. Behl, A., Pereira, V., Varma, A., Tarba, Sh. (2022) Exploring the Dark Side of Electronic-human Resource Management. International Journal of Manpower, 43 (1), pp. 1–11. DOI 10.1108/IJM-04-2022-560. EDN VKULGM.
40. Bukartaite, R., Hooper, D. (2023) Automation, artificial intelligence and future skills needs: an Irish perspective. European Journal of Training and Development, 47 (10), pp. 163–185. DOI 10.1108/EJTD-03-2023-0045. EDN AVMSHT.
41. Jooss, S., Collings, D.G., McMackin, J., Dickmann, M. (2024) A skills‐matching perspective on talent management: Developing strategic agility. Human Resource Management, 63 (1), pp. 141–157. DOI 10.1002/hrm.22192. EDN NOLRXF.
42. Motshwane, M., van Niekerk, A. (2022) Human capital investment selection criteria: Who is worth the investment? SA Journal of Human Resource Management, 20, 11. DOI 10.4102/sajhrm.v20i0.2086. EDN YJJIJJ.
43. Donald, W. E., Baruch, Y., Ashleigh, M. J. (2023) Technological transformation and human resource development of early career talent: Insights from accounting, banking, and finance. Human Resource Development Quarterly, 34 (3), pp. 329–348. DOI 10.1002/hrdq.21491. EDN TBQIYD.
44. Khaowisade, T., Sanrach, R., Silpcharu, T. (2023) The Development of Talent Acquisition Process in Industrial Business Sector to Cope with Digital Technology Change. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev, 8 (4), 44. DOI 10.26668/businessreview/2023.v8i4.1668. EDN CZJDJU.
45. Saadatmand, M. R., Safaie, N., Dastjerdi, M. (2022) Presenting a structural model of digitalised talent management in a new age: A case study on the mobile telecommunication industry in Iran. SA Journal of Human Resource Management, 20, 10. DOI 10.33215/t02k1p32. EDN BAHDQQ.
46. Jooss, S., McDonnell, A., Skuza, A. (2023) Middle managers as key talent management stakeholders: Navigating paradoxes. European Management Review. DOI 10.1111/emre.12587. EDN PMYEEQ.
47. Shava, E., Doorgapersad, S. V. (2021) Talent management: A'recipe'for public service delivery in the fourth industrial revolution. International Journal of Research in Business and Social Science (2147–4478), 10 (8), pp. 138–148. DOI 10.20525/ijrbs.v10i8.1504. EDN CULBMQ.
48. Herm, L.V., Janiesch, Ch., Helm, A., Imgrund, F., Hofmann, A., Winkelmann, A. (2023) A framework for implementing robotic process automation projects. Information Systems and e-Business Management, 21 (1), pp. 1–35. DOI 10.1007/s10257-022-00553-8. EDN YOXIND.
REFERENCES
1. Mishra, S., Ewing, M.T., Cooper, H.B. (2022) Artificial intelligence focus and firm performance. Journal of the Academy of Marketing Science, 50 (6), pp. 1176–1197. https://doi.org/10.1007/s11747-022-00876-5. https://elibrary.ru/uyikew.
2. Grabowska, S., Saniuk, S., Gajdzik, B. (2022) Industry 5.0: improving humanization and sustainability of Industry 4.0. Scientometrics, 127 (6), pp. 3117–3144. https://doi.org/10.1007/s11192-022-04370-1. https://elibrary.ru/hbfqrm.
3. Proia, S., Carli, R., Cavone, G., Dotoli, M. (2021) Control techniques for safe, ergonomic, and efficient human-robot collaboration in the digital industry: A survey. IEEE Transactions on Automation Science and Engineering, 19 (3), pp. 1798–1819. https://doi.org/ 10.1109/TASE.2021.3131011. https://elibrary.ru/ xwivmw.
4. Mukhuty, S., Upadhyay, A., Rothwell, H. (2022) Strategic sustainable development of Industry 4.0 through the lens of social responsibility: The role of human resource practices. Business Strategy and the Environment, 31 (5), pp. 2068–2081. https://doi.org/ 10.1002/bse.3008. https://elibrary.ru/ziumzm.
5. Olsson, A.K., Eriksson, K.M., Carlsson, L. (2025) Management toward Industry 5.0: a co-workership approach on digital transformation for future innovative manufacturing, European Journal of Innovation Management, 28 (1), pp. 65–84. https://doi.org/10.1108/EJIM-09-2023-0833.
6. Li, L. (2022) Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 1–16. https://doi.org/ 10.1007/s10796-022-10308-y. https://elibrary.ru/ mrhorj.
7. Waschull, S., Bokhorst, J.A. C., Wortmann, J. C., Molleman, E. (2022) The redesign of blue-and white-collar work triggered by digitalization: collar matters. Computers & Industrial Engineering, 165, 107910. https://doi.org/10.1016/j.cie.2021.107910. https://elibrary.ru/upfusy.
8. Galanti, T., De Vincenzi, C., Buonomo, I., Benevene, P. (2023) Digital transformation: Inevitable change or sizable opportunity? The strategic role of HR management in industry 4.0. Administrative Sciences, 13 (2), 30. https://doi.org/10.3390/admsci13020030. https://elibrary.ru/eaxuyt.
9. Cimini, Ch., Lagorio, A., Cavalieri, S. (2024) Development and application of a maturity model for Industrial Agile Working. Computers & Industrial Engineering, 188, 109877. https://doi.org/10.1016/ j.cie.2023.109877. https://elibrary.ru/zyfwda.
10. Macpherson, W., Werner, A., Mey, M. R. (2022) Industry 4.0: Emerging job categories and associated competencies in the automotive industry in South Africa. SA Journal of Human Resource Management, 20, 10. https://doi.org/10.33215/t02k1p32. https://elibrary.ru/aflmzf.
11. Ngobeni, D. A., Saurombe, M. D., Joseph, R. M. (2022) The influence of the psychological contract on employee engagement in a South African bank. Frontiers in psychology, 13, 958127. https://doi.org/ 10.3389/fpsyg.2022.958127. https://elibrary.ru/ swhgks.
12. Prikshat, V., Malik, A., Budhwar, P. (2023) AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review, 33 (1), 100860. https://doi.org/ 10.1016/j.hrmr.2021.100860. https://elibrary.ru/ fkojbz.
13. Jacob Fernandes França, T., São Mamede, H., Pereira Barroso, J.M., Pereira Duarte dos Santos, V.M. (2023) Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9, 4. https://doi.org/10.1016/j.heliyon.2023.e14694. https://elibrary.ru/khzhgp.
14. Korzynski, P., Mazurek, G., Altmann, A., Ejdys, J., Kazlauskaite, R., Paliszkiewicz, J., Wach, K., Ziemba, E. (2023) Generative artificial intelligence as a new context for management theories: analysis of ChatGPT. Central European Management Journal, 31 (1), 3–13. https://doi.org/10.1108/CEMJ-02-2023-0091. https://elibrary.ru/ghajot.
15. Rožman, M., Oreški, D., Tominc, P. (2022) Integrating artificial intelligence into a talent management model to increase the work engagement and performance of enterprises. Frontiers in psychology, 13, 1014434. https://doi.org/10.3389/fpsyg.2022.1014434. https://elibrary.ru/ypfsrs.
16. Tanasescu, L.G., Vines, A., Bologa, A.R., Vîrgolici, O. (2024) Data Analytics for optimizing and predicting employee performance. Applied Sciences, 14 (8), 3254. https://doi.org/10.3390/app14083254. https://elibrary.ru/nqaldu.
17. Koenig, N., Tonidandel, S., Thompson, I., Albritton, B., Koohifar, F., Yankov, G., Speer, A., Hardy, Ja.H., Gibson, C., Frost, Ch., Liu, M., McNeney, D., Capman, J., Lowery, Sh., Kitching, M., Nimbkar, A., Boyce, A., Sun, T., Guo, F., Min, H. et al. (2023) Improving measurement and prediction in personnel selection through the application of machine learning. Personnel Psychology, 76 (4), 1061–1123. https://doi.org/10.1111/peps.12608. https://elibrary.ru/rcugyb.
18. Faqihi, A., Miah, Sh. Ja. (2023) Artificial intelligence-driven talent management system: Exploring the risks and options for constructing a theoretical foundation. Journal of Risk and Financial Management, 16 (1), 31. https://doi.org/10.3390/jrfm16010031. https://elibrary.ru/oeybtw.
19. Singh, A., Pandey, Ja. (2024) Artificial intelligence adoption in extended HR ecosystems: enablers and barriers. An abductive case research. Frontiers in Psychology, 14, 1339782. https://doi.org/10.3389/ fpsyg.2023.1339782. https://elibrary.ru/zmqieb.
20. Jacob Fernandes França, T., São Mamede, H., Pereira Barroso, J.M., Pereira Duarte dos Santos, V.M. (2023) Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9 (4). https://doi.org/10.1016/j.heliyon.2023.e14694. https://elibrary.ru/khzhgp.
21. Chowdhury, S., Dey, P., Rodriguez-Espindola, O., Truong, L., Joel-Edgar, S., Bhattacharya, S., Abadie, A. (2023) Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human resource management review, 33 (1), 100899. https://doi.org/10.1016/ j.hrmr.2022.100899. https://elibrary.ru/zuamqa.
22. Grabowska, S., Saniuk, S. (2022). Assessment of the competitiveness and effectiveness of an open business model in the industry 4.0 environment. Journal of Open Innovation: Technology, Market, and Complexity, 8 (1), 57. https://doi.org/10.3390/joitmc8010057. https://elibrary.ru/dqdenm.
23. Cernisevs, O., Popova, Ye., Cernisevs, D. (2023) Business KPIs Based on Compliance Risk Estimation. Journal of Tourism and Services, 14 (27), 222–248. https://doi.org/10.29036/jots.v14i27.636. https://elibrary.ru/wpbcni.
24. Priyashantha, G., Chandradasa, A.H.I. (2023) Electronic human resource management (e-HRM) adoption; a systematic literature review. Sri Lanka Journal of Social Sciences, 46 (1). https://doi.org/10.4038/sljss.v46i1.8573. https://elibrary.ru/efynpi.
25. Prasad, K., Nag, D., Kalavakolanu, S., Vaidya, R. (2023) The application of human resources information systems for enhancing output in agricultural companies. Journal of Social Economics Research, 10 (4), 179–193. https://doi.org/10.18488/ 35.v10i4.3521. https://elibrary.ru/aoznkn.
26. Bhatia, A., Nangia, R. (2023) Impact of human resources information system on human resource strategies with empirical study of banking industry. Journal of Pharmaceutical Negative Results, 1034–1037. https://doi.org/10.47750/pnr.2023.14.S01.140. https://elibrary.ru/fscrkz.
27. Boiko, Ju., Vedernikov, M., Zelena, M., Volianska-Savchuk, L., Bazaliyska, N. (2023) Formation of Innovative Model of Personnel Management on the Basis of Digitalization in the COVID-19 Pandemic. Management and Production Engineering Review, 14. https://doi.org/10.24425/mper.2023.146022. https://elibrary.ru/xziezq.
28. Iakovets, A., Balog, M., Židek, K. (2022). The use of mobile applications for sustainable development of SMEs in the context of Industry 4.0. Applied Sciences, 13 (1), 429. https://doi.org/ 10.3390/app13010429. https://elibrary.ru/exipyk.
29. Straková, Ja., Talíř, M., Váchal, Ja. (2022) Opportunities and threats of digital transformation of business models in SMEs. Economics and Sociology, 15 (3), 159–171. https://doi.org/10.14254/2071-789X.2022/15-3/9. https://elibrary.ru/tttlbu.
30. Chorna, O., et al. (2023) Anti-Crisis regulation of enterprises through digital management. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev, 8 (5) 90. https://doi.org/ 10.55908/sdgs.v11i3.816.
31. Mazurchenko, A., Zelenka, M., Maršíková, K. (2022) Demand for employees' digital skills in the context of banking 4.0. E&M Ekonomie a Management, 25 (2), 41–58. https://doi.org/10.15240/tul/001/ 2022-2-003. https://elibrary.ru/hfqeos.
32. Balková, M., Ližbetinová, L., Lejsková, P. (2022) The values supporting the creativity of employees. Frontiers in Psychology, 12, 805153. https://doi.org/10.3389/fpsyg.2021.805153. https://elibrary.ru/rqxlnb.
33. Alan, H. (2023) A systematic bibliometric analysis on the current digital human resources management studies and directions for future research. J Chin Hum Resour Manag, 14 (1), 38–59. https://doi.org/10.47297/wspchrmWSP2040-800502. 20231401. https://elibrary.ru/tlatoh.
34. Papaevangelou, O., Syndoukas, D., Kalogiannidis, S., Chatzitheodoridis, F. (2023) Efficacy of embedding IT in human resources (HR) practices in education management. Journal of Infrastructure, Policy and Development, 8 (1), 2371. https://doi.org/ 10.24294/jipd.v8i1.2371. https://elibrary.ru/zbozao.
35. Buitek, E. К., Kaliyeva, S. A., Turginbayeva, A. N., Meldakhanova, M. K., Shaikh, A. A. (2023) How much does an employer's attractiveness matter to youth employment? Evidence from a developing country. Asia-Pacific Journal of Business Administration. https://doi.org/10.1108/APJBA-02-2023-0086. https://elibrary.ru/kzdehc.
36. Memon, Kh. R., Ghani, B., Hyder, S. I., Han, H., Zada, M., Ariza-Montes, A., Arraño-Muñoz, M. (2022) Management of knowledge and competence through human resource information system-A structured review. Frontiers in Psychology, 13, 944276. https://doi.org/10.3389/fpsyg.2022.944276. https://elibrary.ru/mabxzy.
37. Amoako, R., Jiang, Yu., Adu-Yeboah, S. S., Frempong, M. F., Tetteh, S. (2023) Factors influencing electronic human resource management implementation in public organisations in an emerging economy: An empirical study. South African Journal of Business Management, 54 (1), 2937. https://doi.org/ 10.4102/sajbm.v54i1.2937. https://elibrary.ru/aylyeh.
38. Ceric, A., Parton, K. (2024) What prevents organisations from achieving e-HRM potential? Australasian Journal of Information Systems, 28. https://doi.org/10.3127/ajis.v28.3877. https://elibrary.ru/kfmtjr.
39. Behl, A., Pereira, V., Varma, A., Tarba, Sh. (2022) Exploring the Dark Side of Electronic-human Resource Management. International Journal of Manpower, 43 (1), 1–11. https://doi.org/10.1108/IJM-04-2022-560. https://elibrary.ru/vkulgm.
40. Bukartaite, R., Hooper, D. (2023) Automation, artificial intelligence and future skills needs: an Irish perspective. European Journal of Training and Development, 47 (10), 163–185. https://doi.org/ 10.1108/EJTD-03-2023-0045. https://elibrary.ru/ avmsht.
41. Jooss, S., Collings, D. G., McMackin, J., Dickmann, M. (2024) A skills‐matching perspective on talent management: Developing strategic agility. Human Resource Management, 63 (1), 141–157. https://doi.org/10.1002/hrm.22192. https://elibrary.ru/nolrxf.
42. Motshwane, M., van Niekerk, A. (2022) Human capital investment selection criteria: Who is worth the investment? SA Journal of Human Resource Management, 20, 11. https://doi.org/10.4102/ sajhrm.v20i0.2086. https://elibrary.ru/yjjijj.
43. Donald, W. E., Baruch, Y., Ashleigh, M. J. (2023) Technological transformation and human resource development of early career talent: Insights from accounting, banking, and finance. Human Resource Development Quarterly, 34 (3), 329–348. https://doi.org/10.1002/hrdq.21491. https://elibrary.ru/tbqiyd.
44. Khaowisade, T., Sanrach, R., Silpcharu, T. (2023) The Development of Talent Acquisition Process in Industrial Business Sector to Cope with Digital Technology Change. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev, 8 (4), 44. https://doi.org/10.26668/businessreview/2023.v8i4. 1668. https://elibrary.ru/czjdju.
45. Saadatmand, M. R., Safaie, N., Dastjerdi, M. (2022) Presenting a structural model of digitalised talent management in a new age: A case study on the mobile telecommunication industry in Iran. SA Journal of Human Resource Management, 20, 10. https://doi.org/10.33215/t02k1p32. https://elibrary.ru/bahdqq.
46. Jooss, S., McDonnell, A., Skuza, A. (2023) Middle managers as key talent management stakeholders: Navigating paradoxes. European Management Review. https://doi.org/10.1111/emre.12587. https://elibrary.ru/pmyeeq.
47. Shava, E., Doorgapersad, S. V. (2021) Talent management: A'recipe'for public service delivery in the fourth industrial revolution. International Journal of Research in Business and Social Science (2147–4478), 10 (8), 138–148. https://doi.org/10.20525/ ijrbs.v10i8.1504. https://elibrary.ru/culbmq.
48. Herm, L.V., Janiesch, Ch., Helm, A., Imgrund, F., Hofmann, A., Winkelmann, A. (2023) A framework for implementing robotic process automation projects. Information Systems and e-Business Management, 21 (1), 1–35. https://doi.org/10.1007/s10257-022-00553-8. https://elibrary.ru/yoxind.