MODELING OF MULTI-CRITERIA EVALUATION OF SOCIAL, ECOLOGICAL AND ECONOMIC CONDITIONS AND DEVELOPMENT OF A TERRITORY
DOI:
https://doi.org/10.22394/2304-3369-2021-2-102-119Keywords:
multi-criteria evaluation, evaluation matrix, vector analysis, territory analysis, tools for analysis, mathematical model, sociological survey.Abstract
Problem statement. Evaluation of condition and development of a territory is an inseparable part of research in the field of economics and management. The existing methodology implies many different approaches, however most of them are based on processing and interpretation of open to public statistical data. Such source of information is not always reliable, which results in false evaluations and judgments. It is important to search for the suitable methods to assess a territory in case of lack of statistical data or doubt in its accuracy. The research goal is to introduce a new, up-to-date methodology for a complex multi-criteria evaluation of social ecological and economic situation and development of a territory
Methodological foundation. The conceptual basis for this research is the argument that it is possible to evaluate the conditions and development of a territory on the basis of sociological survey. People’s opinion about the territory helps to reveal the prerequisites of their future economically relevant behavior, whether it is moving away to another place or investing in the territory. From the point of view of economic research, people’s opinion might be more relevant than records. The trust in people’s views as a source of information is higher than in open to public statistical data. Methods of research. A computational model has been developed in order to update the methodology of evaluation. It is based on an algorithm of integral estimation of an economic entity worked out by P.V. Trusov. The results of the use of this model are visualized with the help of Microsoft Excel following the method proposed by S.S. Gordeev and A.V. Kocherov. Research materials. Statistical basis for the model approbation is the results of sociological survey held in municipal units of the Chelyabinsk region in 2019, which are open to public. The main results. The paper provides a mathematical model of a complex multi-criteria evaluation of social, ecological and economic conditions and development of a territory. It has been tested on the basis of both conditions and development of the towns of the Chelyabinsk region. The results are visualized and interpreted. Conclusions. The paper proves reliability of the method. It can be used in various economic studies of territories of different administrative levels.
References
1. Пузанов А.С., Трутнев Э.К., Маркварт Э., Попов Р.А., Сафарова М.Д. (2017). Стратегическое планирование и градорегулирование на муниципальном уровне. М. : Издательский дом «Дело» РАНХиГС. 354 с.
2. Нисневич Ю.А. (2014). Индексы развития государств мира: справочник. М. : Издательский дом ВШЭ. 247 с.
3. Васильева Е.Е., Долгова Е.В. (2016). Моделирование многокритериальной оценки кредитного риска в регионах РФ // Российский экономический интернет-журнал. № 1. С. 1–16.
4. Гранберг А.Г. (2006). Основы региональной экономики. М. : ГУ ВШЭ. 492 с.
5. Кэне Ф., Тюрго А.Р.Ж., Дюпон де Немур П.С. (2008). Физиократы. Избранные экономические произведения. М. : Эксмо. 1198 с.
6. Смит А. (2016). Исследование о природе и причинах богатства народов. М. : Эксмо. 1056 с.
7. Рикардо Д. (2016). Начала политической экономии и налогового обложения. М. : Эксмо. 1040 с.
8. Макконнелл К., Брю С., Флинн Ш. (2019). Экономикс. Принципы, проблемы и политика. М. : Инфра-М. 1152 с.
9. Алаев Э.Б., Бриваловская Г.А., Иоффе Г.В., Агранат Г.А. (1989). Территориальная структура народного хозяйства СССР в период ИТР: сдвиги и тенденции. М. : Наука. 190 с.
10. Колесов В.П. (2008). Человеческое развитие: новое измерение социально-экономического прогресса. М. : Права человека. 636 с.
11. Григорьев Л.М. (2019). Особенности развития человеческого капитала в субъектах Российской Федерации // Аналитический центр при Правительстве Российской Федерации. URL: https://ac.gov.ru/files/content/22461/3-grigorevpdf.pdf (дата обращения: 03.11.2020).
12. Хабарова Д.С. (2013). Обзор программных комплексов многокритериальной оптимизации // Прикладная информатика, № 2 (44). С. 102–112.
13. Карпенко А.П. (2017). Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой. М. : МГГУ им. Н. Э. Баумана. 446 с.
14. Zitzler E., Laumanns M., Thiele L. (2002). SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. Evolutionary Methods for Design, Optimization, and Control. Pp. 19–26.
15. Statnikova R.B., Bordetskya A., Statnikov A. (2005). Multicriteria analysis of real-life engineering optimization problems: statement and solution, Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 5–7, pp. e685-e696.
16. Lotov A.V., Miettinen K. (2008). “Visualizing the Pareto Frontier” Multiobjective Optimization: Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, no. 5252, pp. 213–243.
17. Кандырин Ю.В. (2013). Многокритериальный анализ, выбор и структурирование вариантов в САПР. М. : Издательство МЭИ. 318 с.
18. Черноруцкий И.Г. (2005). Методы принятия решений. СПб. : БХВ-Петербург. 399 с.
19. Yang F., Zeng G., Du Ch., Tang L., Zhou J., Li Zh. (2008). Spatial analyzing system for urban land-use management based on GIS and multicriteria assessment modeling, Progress in Natural Science, vol. 18, iss. 10, pp. 1279–1284.
20. Dragićević S., Dujmović J., Minardi R. (2018). Modeling Urban Land-Use Suitability with Soft Computing: The GIS-LSP Method. GeoComputational Analysis and Modeling of Regional Systems. Pp. 257–275.
21. Bitterman P., Bennett D.A. (2016). Constructing Stability Landscapes: Using a Coupled AgentBased Model to Explore Alternative Stable States and Resilience, Ecology & Society, vol. 21, no. 3. URL: 10.5751/ES-08677-210321.
22. Sahin F., Kara M.K., Koc A., et al. (2020)Multi-criteria decision-making using GIS-AHP for air pollution problem in Igdir Province/Turkey, Environ Sci Pollut Res, no. 27, pp. 36215–36230. DOI: 10.1007/s11356-020-09710-3.
23. Issa S.M., Al Shehhi B. (2012). A GIS-based multi-criteria evaluation system for selection of landfill sites: a case study from Abu Dhabi, United Arab Emirates Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIX-B2. Pp. 133–138. DOI: 10.5194/ isprsarchives-XXXIX-B2-133-2012.
24. Трусов П.В. (2007). Введение в математическое моделирование. М. : Логос. 440 с.
25. Бородкин Ф.М., Айвазян С.А. (2006). Социальные индикаторы. М. : ЮНИТИ-ДАНА. 607 с.
26. Иванова З.И. (2016). Социологические методы для устойчивого развития города. М. : Московский государственный строительный университет. 202 с.
27. Бобылев С.Н., Зубаревич Н.В., Соловьева С.В., ВласовЮ.С. (2011). Устойчивое развитие: методология и методики измерения. М. : Экономика. 358 с.
28. Грачева М.В., Туманова Е.А. (2018). Математические и инструментальные методы в современных экономических исследованиях : Монография. М. : Экономический факультет МГУ имени М. В. Ломоносова. 232 с.
29. Гордеев С.С., Зырянов С.Г., Ситковский А.М. (2019). Оценки качества жизни и социальных приоритетов развития территорий // Вестник Челябинского государственного университета. № 11 (433). С. 38–47.
30. Гордеев С.С., Кочеров А.В. (2017). Основы анализа региональной экономической динамики: визуализация и оценка в среде MS Office.
Челябинск : Изд-во ЧелГУ. 130 с.
31. Глазычев В.Л., Стародубровская И.В. (2008). Челябинская агломерация: потенциал развития. Челябинск : ИЭПП. 278 с.
32. Васильева Е.Е., Долгова Е.В. (2015). Некоторые методические аспекты интегральной оценки экономического объекта на примере рейтингов регионов РФ // Научные ведомости Белгородского государственного университета. Серия «Экономика. Информатика». № 19 (216). С. 5–13.
REFERENCES
1. Puzanov A.S., Trutnev E.K., Marcvart E., Popov R.A., Safarova M.D. (2017). Strategic planning and city-regulation at the municipal level. Moscow: Publishing House “Delo” of RANEPA, 354 p.
2. Nisnevich Yu.A. (2014). World Development Indices: Reference Book. Moscow: Publishing House of HSE, 247 p.
3. Vasileva E.E., Dolgova E.V. (2016). Modeling a multi-criteria credit risk assessment in the regions of the Russian Federation, Russian economic Internet Journal, no. 1, pp. 1–16.
4. Granberg A.G. (2006). Basics of the regional economy. Moscow: GU of HSE, 492 p.
5. Kene F., Turgo A.R.Zh., Dupont de Nemur P.S. (2008). Physiocrats. Selected economic work. Moscow: Eksmo, 1198 p.
6. Smith A. (2016). Research on nature and causes of wealth of peoples. Moscow: Eksmo, 1056 p.
7. Ricardo D. (2016). The start of political economy and tax case. Moscow: Eksmo, 1040 p.
8. McConnell K., Bru S., Flynn Sh. (2019). Economics. Principles, problems and politics. Moscow: Infra-M, 1152 p.
9. Alaev E.B., Brivalovskaya G.A., Ioffe G.V., Agranat G.A. (1989). The territorial structure of the national economy of the USSR in the period of the ITR: shifts and trends. Moscow: Nauka, 190 p.
10. Kolesov V.P. (2008). Human development: a new dimension of socio-economic progress. Moscow: Prava cheloveka, 636 p.
11. Grigorev L.M. (2019). Features of human capital development in the constituent entities of the Russian Federation. Analytical Center under the Government of the Russian Federation. URL: https://ac.gov.ru/files/content/22461/3-grigorev-pdf.pdf (accessed 03.11.2020).
12. Khabarova D.S. (2013). Overview of software complexes of multi-criteria optimization, Applied informatics, no. 2 (44), pp. 102–112.
13. Karpenko A.P. (2017). Modern search engine optimization algorithms. Algorithms inspired by nature. Moscow: MGGU named after N. E. Bauman, 446 p.
14. Zitzler E., Laumanns M., Thiele L. (2002). SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. Evolutionary Methods for Design, Optimization, and Control. Pp. 19–26.
15. Statnikova R.B., Bordetskya A., Statnikov A. (2005). Multicriteria analysis of real-life engineering optimization problems: statement and solution, Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 5–7, pp. e685-e696.
16. Lotov A.V., Miettinen K. (2008). “Visualizing the Pareto Frontier” Multiobjective Optimization: Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, no. 5252, pp. 213–243.
17. Kandyrin Yu.V. (2013). Multi-criteria analysis, selection and structuring of options in CAD. Moscow: MEI Publishing House, 318 p.
18. Chernorutsky I.G. (2005). Methods of decision-making. Saint Petersburg: BHV-Petersburg, 399 p.
19. Yang F., Zeng G., Du Ch., Tang L., Zhou J., Li Zh. (2008). Spatial analyzing system for urban land-use management based on GIS and multicriteria assessment modeling, Progress in Natural Science, vol. 18, iss. 10, pp. 1279–1284.
20. Dragićević S., Dujmović J., Minardi R. (2018). Modeling Urban Land-Use Suitability with Soft Computing: The GIS-LSP Method. GeoComputational Analysis and Modeling of Regional Systems. Pp. 257–275.
21. Bitterman P., Bennett D.A. (2016). Constructing Stability Landscapes: Using a Coupled AgentBased Model to Explore Alternative Stable States and
Resilience, Ecology & Society, vol. 21, no. 3. URL: 10.5751/ES-08677-210321.
22. Sahin F., Kara M.K., Koc A., et al. (2020). Multi-criteria decision-making using GIS-AHP for air pollution problem in Igdir Province/Turkey, Environ Sci Pollut Res, no. 27, pp. 36215–36230. DOI: 10.1007/s11356-020-09710-3.
23. Issa S.M., Al Shehhi B. (2012). A GIS-based multi-criteria evaluation system for selection of landfill sites: a case study from Abu Dhabi, United Arab Emirates Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIX-B2. Pp. 133–138. DOI: 10.5194/isprsarchives-XXXIX-B2-133-2012.
24. Trusov P.V. (2007). Introduction to mathematical modeling. Moscow: Logos, 440 p.
25. Borodkin F.M., Ayvazyan S.A. (2006). Social indicators. Moscow: UNITI-DANA, 607 p.
26. Ivanova Z.I. (2016). Sociological methods for the sustainable development of the city. Moscow: Moscow State University of Construction, 202 p.
27. Bobylev S.N., Zubarevich N.V., Solovyova S.V., Vlasov Yu.S. (2011). Sustainable development: methodology and measurement methods. Moscow: Economics, 358 p.
28. Gracheva M.V., Tumanova E.A. (2018). Mathematical and instrumental methods in modern economic research. Moscow: Economic Faculty of the Lomonosov Moscow State University, 232 p.
29. Gordeev S.S., Zyryanov S.G., Sitkovsky A.M.
(2019). Estimates of the quality of life and social priorities of the development of territories, Bulletin of the Chelyabinsk State University, no. 11 (433), pp. 38–47.
30. Gordeev S.S., Kocherov A.V. (2017). Basics for analyzing regional economic dynamics: visualization and assessment in the MS Office environment. Chelyabinsk: ChelSU Publishing house, 130 s.
31. Glazychev V.L., Starodubrovskaya I.V. (2008). Chelyabinsk agglomeration: developmental potential. Chelyabinsk: IEPP, 278 p.
32. Vasileva E.E., Dolgova E.V. (2015). Some methodological aspects of the integral assessment of the economic object on the example of the ratings of the regions of the Russian Federation, Scientific Validity of the Belgorod State University. Series “Economics. Computer science”, no. 19 (216), pp. 5–13.